Abstract. In 1985, Levy used a theorem of Berstein to prove that all hyperbolic topological polynomials are equivalent to complex polynomials. We prove a partial converse to the Berstein-Levy Theorem: given post-critical dynamics that are in a sense strongly non-hyperbolic, we prove the existence of topological polynomials which are not equivalent to any complex polynomial that realize these post-critical dynamics. This proof employs the theory of self-similar groups to demonstrate that a topological polynomial admits an obstruction and produces a wealth of examples of obstructed topological polynomials.