We answer an open question of Grigorchuk and Zuk about amenability using
random walks. Our results separate the class of amenable groups from the
closure of subexponentially growing groups under the operations of group
extension and direct limits; these classes are separated even within the realm
of finitely presented groups.Comment: 11 pages, 2 figure
We answer Hubbard's question on determining the Thurston equivalence class of
``twisted rabbits'', i.e. images of the ``rabbit'' polynomial under n-th powers
of the Dehn twists about its ears.
The answer is expressed in terms of the 4-adic expansion of n. We also answer
the equivalent question for the other two families of degree-2 topological
polynomials with three post-critical points.
In the process, we rephrase the questions in group-theoretical language, in
terms of wreath recursions.Comment: 40 pages, lots of figure
Abstract. We show that the group of bounded automatic automorphisms of a rooted tree is amenable, which implies amenability of numerous classes of groups generated by finite automata. The proof is based on reducing the problem to showing amenability just of a certain explicit family of groups ("Mother groups") which is done by analyzing the asymptotic properties of random walks on these groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.