This paper analyzes the sea surface height dataset from the TOPEX, Jason-1, and Jason-2 satellites of a 19-yr time series in order to extract the tide harmonic constituents for the region limited by latitude 58N-358S and longitude 558-208W. The harmonic analysis results implemented here were compared with the tidal constituents estimated by three classical tidal models [i.e., TOPEX/Poseidon Global Inverse Solution 7.2 (TPXO7.2), Global Ocean Tide 4.7 (GOT4.7), and Finite Element Solution 2102 (FES2102)] and also with those extracted from in situ measurements. The Courtier criterion was used to define the tide regimes and regionally they are classified as semidiurnal between the latitude range from approximately 58N to 228S, semidiurnal with diurnal inequality from 228 to about 298S, and mixed southward of latitude 228S. The comparison results among all tide approaches were done by analyzing the root-sum-square misfit (RSSmisfit) value. Generally, the RSSmisfit difference values are not higher than 12 cm among them in deep-water regions. On the other hand, in shallow water, all models have presented quite similar performance, and the RSSmisfit values have presented higher variance than the previous region, as expected. The major discrepancy results were particularly noted for two tide gauges located in the latitude range from 58N to 28S. The latter was investigated and conclusions have mainly pointed to the influence of the mouth of the Amazon River and the considerable distance between tide measurements and the satellite reference point, which make it quite hard to compare those results. In summary, the results have showed that all models presently generate quite reliable results for deep water; however, further study should done in order to improve them in shallow-water regions too.