2017 IEEE International Conference on Big Data (Big Data) 2017
DOI: 10.1109/bigdata.2017.8257993
|View full text |Cite
|
Sign up to set email alerts
|

Tiered sampling: An efficient method for approximate counting sparse motifs in massive graph streams

Abstract: We introduce Tiered Sampling, a novel technique for approximate counting sparse motifs in massive graphs whose edges are observed in a stream. Our technique requires only a single pass on the data and uses a memory of fixed size M , which can be magnitudes smaller than the number of edges.Our methods addresses the challenging task of counting sparse motifs -sub-graph patterns that have low probability to appear in a sample of M edges in the graph, which is the maximum amount of data available to the algorithms… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
3
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 17 publications
1
3
0
Order By: Relevance
“…This is an arbitrary example, similar results can be observed on almost all the motifs and datasets 7. Similar observations hold for PRESTO-E.…”
supporting
confidence: 84%
See 1 more Smart Citation
“…This is an arbitrary example, similar results can be observed on almost all the motifs and datasets 7. Similar observations hold for PRESTO-E.…”
supporting
confidence: 84%
“…A fundamental problem in the analysis of network motifs is the counting problem [5,2], which requires to output the number of instances of the given topology defining the motif. This challenging computational problem has been extensively studied, with several techniques designed to count the number of occurrences of simple motifs, such as triangles [26,21,24] or sparse motifs [7].…”
Section: Introductionmentioning
confidence: 99%
“…The above methods considered the triangle counting problem in many different settings, including offline graphs [5,8,20,[48][49][50], insertion-only [1,2,7,18,26,35,41,45,46,48,60] and fully-dynamic [4,42,44] graph streams, sliding windows [11], and distributed graphs [32,34,43]. Moreover, sampling methods were also proposed for estimating more complex motifs than triangles, e.g., 4-vertex motifs [19,39], 5-vertex motifs [36,58,59,61], motifs with 6 or more vertices [3], 𝑘-cliques [6,17], sparse motifs with low counts [47], and butterflies in bipartite graphs [39]. However, all the above methods were not designed for temporal graphs.…”
Section: Subgraph (Motif) Counting In Static Graphsmentioning
confidence: 99%
“…So-called wedge-based methods sample length-2 paths [48], and this concept has been generalized for counting 4-cliques [25]. Finally, tiered-sampling combines sampling of arbitrary subgraphs to count the occurrence of larger graphs (with a focus on 4-cliques and 5-cliques) [53].…”
Section: Additional Related Workmentioning
confidence: 99%