Abstract. Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their number is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete.