Studies of wind erosion based on Geographic Information System (GIS) and Remote Sensing (RS) have not attracted sufficient attention because they are limited by natural and scientific factors. Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia, China. In the present study, a new model based on five factors including the number of snow cover days, soil erodibility, aridity, vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion. The results showed that wind erosion widely existed in Inner Mongolia. It covers an area of approximately 90×10 4 km 2 , accounting for 80% of the study region. During 1985-2011, wind erosion has aggravated over the entire region of Inner Mongolia, which was indicated by enlarged zones of erosion at severe, intensive and mild levels. In Inner Mongolia, a distinct spatial differentiation of wind erosion intensity was noted. The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region. Zones occupied by barren land or sparse vegetation showed the most severe erosion, followed by land occupied by open shrubbery. Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity. In addition, a significantly negative relation was noted between change intensity and land slope. The relation between soil type and change intensity differed with the content of CaCO 3 and the surface composition of sandy, loamy and clayey soils with particle sizes of 0-1 cm. The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period. Therefore, the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia. Citation: Yi ZHOU, Bing GUO, ShiXin WANG, HePing TAO. 2015. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing. Journal of Arid Land,