Retinal degenerative diseases such as macular degeneration, glaucoma, and diabetic retinopathy constitute the leading cause of blindness in the industrialized world. There is a continuous demand in investigative ophthalmic research for the development of new treatment modalities for retinal therapy. Unfortunately, efforts to identify novel neuroprotective and neuroregenerative agents have often been hindered by an experimental model gap that exists between high-throughput methods via dissociated cells and preclinical animal models. Even though dissociated cell culture is rapid and high-throughput, it is limited in its ability to reproduce the in vivo conditions. In contrast, preclinical animal models may offer greater fidelity, albeit they lack efficiency and experimental control. Retina explant cultures provide an ideal bridge to close this gap and have been used to study an array of biological processes such as retinal development and neurodegeneration. However, it is often difficult to interpret findings from these studies due to the wide variety of experimental species and culture methods used. This review provides a comprehensive overview of current ex vivo neuroretina culture methods and assessments, with a focus on their suitability, advantages, and disadvantages, along with novel insights and perspectives on the organotypic culture model as a high-throughput platform for screening promising molecules for retinal regeneration.