Long-term monitoring of an environment is a fundamental requirement for most wireless sensor networks. Owing to the fact that the sensor nodes have limited energy budget, prolonging their lifetime is essential in order to permit long-term monitoring. Furthermore, many applications require sensor nodes to obtain an accurate estimation of a point-source signal (for example, an animal call or seismic activity). Commonly, multiple sensor nodes simultaneously sample and then cooperate to estimate the event signal. The selection of cooperation nodes is important to reduce the estimation error while conserving the network's energy. In this paper, we present a novel method for sensor data acquisition and signal estimation, which considers estimation accuracy, energy conservation, and energy balance. The method, using a concept of 'virtual clusters,' forms groups of sensor nodes with the same spatial and temporal properties. Two algorithms are used to provide functionality. The 'distributed formation' algorithm automatically forms and classifies the virtual clusters. The 'round robin sample scheme' schedules the virtual clusters to sample the event signals in turn. The estimation error and the energy consumption of the method, when used with a generalized sensing model, are evaluated through analysis and simulation. The results show that this method can achieve an improved signal estimation while reducing and balancing energy consumption.