Free-surface turbulence, albeit constrained onto a two-dimensional space, exhibits features that barely resemble predictions of simplified two-dimensional modeling. We demonstrate that, in a three-dimensional open channel flow, surface turbulence is characterized by upscale energy transfer, which controls the long-term evolution of the larger scales. We are able to associate downscale and upscale energy transfer at the surface with the two-dimensional divergence of velocity. We finally demonstrate that surface compressibility confirms the strongly three-dimensional nature of surface turbulence.