“…1). An increase in XUV average power would help for example to mitigate space charge effects in photoelectron emission spectroscopy [17] (at high repetition rates), as well as to shorten acquisition times and, hence, enhance the signal-to-noise ratio in (time-resolved) coincidence measurements [18], XUVabsorption spectroscopy [19], XUV-ionization spectroscopy [20], coherent diffractive imaging of ultrafast magnetization dynamics [21], fluorescence spectroscopy [22] and XUV-pump XUV-probe experiments [23,24], among others. Furthermore, shortest pulses are desired to investigate fastest dynamics in atoms [6,25], molecules [26], ions [23], solids [19] and compound materials [27].…”