Background: Although the occurrence of some infectious diseases including TB was found to be associated with specific weather factors, few studies have incorporated weather factors into the model to predict the incidence of tuberculosis (TB). We aimed to establish an accurate forecasting model using TB data in Guangdong Province, incorporating local weather factors.Methods: Data of sixteen meteorological variables (2003-2016) and the TB incidence data (2004-2016) of Guangdong were collected. Seasonal autoregressive integrated moving average (SARIMA) model was constructed based on the data. SARIMA model with weather factors as explanatory variables (SARIMAX) was performed to fit and predict TB incidence in 2017. Results: Maximum temperature, maximum daily rainfall, minimum relative humidity, mean vapor pressure, extreme wind speed, maximum atmospheric pressure, mean atmospheric pressure and illumination duration were significantly associated with log(TB incidence). After fitting the SARIMAX model, maximum pressure at lag 6 (β= -0.007, P < 0.05, 95% confidence interval (CI): -0.011, -0.002, mean square error (MSE): 0.279) was negatively associated with log(TB incidence), while extreme wind speed at lag 5 (β=0.009, P < 0.05, 95% CI: 0.005, 0.013, MSE: 0.143) was positively associated. SARIMAX (1, 1, 1) (0, 1, 1)12 with extreme wind speed at lag 5 was the best predictive model with lower Akaike information criterion (AIC) and MSE. The predicted monthly TB incidence all fall within the confidence intervals using this model. Conclusions: Weather factors have different effects on TB incidence in Guangdong. Incorporating meteorological factors into the model increased the accuracy of prediction.