2019
DOI: 10.1016/j.matcom.2019.01.001
|View full text |Cite
|
Sign up to set email alerts
|

Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

2
18
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 56 publications
(22 citation statements)
references
References 31 publications
2
18
0
2
Order By: Relevance
“…The accuracy of the forecast model seems upper than 51%, which illustrate 23% increase in prediction accuracy. Pal and Kar (2019) used a hybrid approach to forecast time series of stock price by using data discretization based on fuzzistics [1; 2], where cumulative probability distribution approach (CPDA) is used to get the intervals for the linguistic values. First-order fuzzy rule generation and reduction of rule sets by rough set theory have been performed.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The accuracy of the forecast model seems upper than 51%, which illustrate 23% increase in prediction accuracy. Pal and Kar (2019) used a hybrid approach to forecast time series of stock price by using data discretization based on fuzzistics [1; 2], where cumulative probability distribution approach (CPDA) is used to get the intervals for the linguistic values. First-order fuzzy rule generation and reduction of rule sets by rough set theory have been performed.…”
Section: Literature Reviewmentioning
confidence: 99%
“…[8] tarafından Avustralya'daki elektrik talebinin yarım saatlik bir ölçekte tahmin etme potansiyeli araştırılmıştır. Pal ve Kar [9] hisse senedi fiyatlarını tahmin etmek için bulanık mantık yöntemi ile kaba küme teorisinden oluşan melez bir model geliştirmişlerdir. Önerdikleri modeli mevcut modeller ile karşılaştırarak daha iyi sonuç verdiğini tespit etmişlerdir.…”
Section: Li̇teratur Taramasi (Literature Review)unclassified
“…Geliştirdikleri yöntemi gerçek hayatta uygulanabilir iki örnek üzerinde test ederek başarılı sonuçlar elde etmişlerdir. Bu çalışmalar incelendiğinde zaman serileri analizi tekniklerinin [2,4] ve meta-sezgisel algoritmaların [5][6][7][8][9][10] EET tahmininde yaygın bir şekilde kullanıldığı ve başarılı sonuçlar verdiği görülmüştür. Dünyada EET tahmininde yaygın olarak kullanılan bir diğer teknik ise YSA'dır.…”
Section: Li̇teratur Taramasi (Literature Review)unclassified
“…Pawlak mainly based on the object between the indistinguishability of the theory of object clustering into basic knowledge domain, by using the basic knowledge of the upper and lower approximation [4] to describe the data object uncertainty, which derives the concept of classification or decision rule. Related researches spread many field, for instance, machine learning [5]- [10], cloud computing [11] [12] [13] [14], knowledge discovery [15] [16] [17] [18], biological information processing [19] [20], artificial intelligence [21] [22] [23] [24] [25], neural computing [26] [27] [28] and so on.…”
Section: Introductionmentioning
confidence: 99%