We present an improved photometric redshift estimator code, CuBANz, that is publicly available at https://goo.gl/fpk90V. It uses the back propagation neural network along with clustering of the training set, which makes it more efficient than existing neural network codes. In CuBANz, the training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u − g, g − r etc.) rather than the apparent magnitudes at various photometric bands as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. Separate neural networks are trained for each cluster using all possible colors, magnitudes and uncertainties in the measurements. For a galaxy with unknown redshift, we identify the closest possible clusters having similar photometric properties and use those clusters to get the photometric redshifts using the particular networks that were trained using those cluster members. For galaxies that do not match with any training cluster, the photometric redshifts are obtained from a separate network that uses entire training set. This clustering method enables us to determine the redshifts more accurately. SDSS Stripe 82 catalog has been used here for the demonstration of the code. For the clustered sources with redshift range z spec < 0.7, the residual error ( (z spec − z phot ) 2 1/2 ) in the training/testing phase is as low as 0.03 compared to the existing ANNz code that provides residual error on the same test data set of 0.05. Further, we provide a much better estimate of the uncertainty of the derived photometric redshift.
Transfer learning involves transferring prior knowledge of solving similar problems in order to achieve quick and efficient solution. The aim of fuzzy transfer learning is to transfer prior knowledge in an imprecise environment. Time series like stock market data are non-linear in nature and movement of stock is uncertain, so it is quite difficult following the stock market and in decision making. In this study, we propose a method to forecast stock market time series in the situation when we can use prior experience to make decisions. Fuzzy transfer learning (FuzzyTL) is based on knowledge transfer in that and adapting rules obtained domain. Three different stock market time series data sets are used for comparative study. It is observed that the effect of knowledge transferring works well together with smoothing of dependent attributes as the stock market data fluctuate with time. Finally, we give an empirical application in Shenzhen stock market with larger data sets to demonstrate the performance of the model. We have explored FuzzyTL in time series prediction to unerstand the essence of FuzzyTL. We were working on the question of the capability of FuzzyTL in improving prediction accuracy. From the comparisons, it can be said fuzzy transfer learning with smoothing improves prediction accuracy efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.