The inhibitory effect of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and its N-methylated (N-methylexo-THPO) and N-ethylated (N-ethyl-exo-THPO) analogs, derived from ␥-aminobutyric acid (GABA) and 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO) on GABA transport was investigated using cultured neocortical neurons (GABAergic) and astrocytes and cloned mouse GABA transporters GAT1-4 expressed in human embryonic kidney (HEK) 293 cells. Anticonvulsant activity was assessed after i.c.v. administration to Frings audiogenic seizure-susceptible mice. Anticonvulsant activity of the O-pivaloyloxymethyl prodrug of N-methyl-exo-THPO was assessed after i.p. administration. Results from these studies were compared with those obtained from similar studies with the novel anticonvulsant drug tiagabine, which acts via inhibition of GABA transport. exo-THPO and its N-alkyl analogs inhibited neuronal, astrocytic, and GAT1-mediated GABA transport but not GABA uptake mediated by GAT2-4. N-Methyl-exo-THPO was 8-fold more potent as an inhibitor of astrocytic versus neuronal GABA uptake. The IC 50 value for inhibition of GABA uptake by GAT1 closely reflected its IC 50 value for inhibition of neuronal uptake. Tiagabine was approximately 1000-fold more potent than exo-THPO and its alkyl derivatives as an inhibitor of GABA uptake in cultured neural cells and GAT1-expressing HEK 293 cells. exo-THPO, its alkylated analogs, and tiagabine displayed a timeand dose-dependent inhibition of audiogenic seizures after i.c.v. administration. N-Methyl-exo-THPO was the most potent anticonvulsant among the exo-THPO compounds tested and only slightly less potent than tiagabine. The findings suggest a correlation between anticonvulsant efficacy and selective inhibition of astroglial GABA uptake. Furthermore, results obtained with the N-methyl-exo-THPO prodrug demonstrate the feasibility of developing a glial-selective GABA uptake inhibitor with systemic bioavailability.Within the central nervous system (CNS), ␥-aminobutyric acid (GABA) serves as the principal inhibitory neurotransmitter. Once released from the presynaptic terminal, GABA binds to both presynaptic and postsynaptic GABA receptors, which are coupled to either a G protein-associated K ϩ channel (GABA B receptors) or form Cl Ϫ -permeable ion channels (GABA A receptors). Alterations in GABA-ergic function have been implicated in a number of CNS disorders, including epilepsy, migraine, bipolar disorder, anxiety, and depression. As such, it is not surprising that the GABA A receptor has been the target for numerous therapeutic entities, including the benzodiazepines, barbiturates, and neurosteroids. Collec-