In this research work, we prepared for the first time TiO 2 nanosheets and nanobowls assembled on an arrangement of TiO 2 nanocavities, and studied their morphological, optical, and structural properties. The assembled nanostructures were synthesized by a fast two-step electrochemical anodization using fluorides and ethylene glycol. By Field Emission Scanning Electron Microscopy, we showed that these nanostructures have a morphology well organized and ordered with a homogeneous distribution. Also, other characteristics such as photoluminescence, reflectance spectra, band gap energy, and Raman spectra were studied and compared with the optical and structural properties of TiO 2 nanotubes. We found that the time of anodization is a key parameter to control the final shape of the individual elements in the nanostructure. Our results show that when nanobowls or nanosheets are self-assembled on nanocavities the morphological, optical, and structural properties change significantly in comparison to TiO 2 nanotubes. Furthermore, the emission was improved considerably and the band gap energy was modified to higher energy values. Likewise, the interference fringes are generated in the reflectance spectra by the length of the nanocavities and by the thickness of the nanobowls and the nanosheets. Finally, a reduction on the displaced the E g(1) Raman mode was observed with decreasing of the length of the nanocavities.