“…The quantity of engineered nanoparticles (NPs) is expected to increase significantly in the years to come as they receive growing global attention due to their attractive properties, multifunctionalities, unique characteristics, and innovative applications in different industrial and scientific domains [2][3][4][5][6]. Several physical and chemical methods have been extensively explored to fabricate NPs, such as laser ablation [7,8], coprecipitation [9,10], hydrothermal route [11,12], solvothermal route [13,14], sol-gel process [15,16], polyol process [17,18], electrochemical methods [19,20], sonochemistry [21,22], and microwaveassisted methods [23,24]. However, the use of toxic chemicals and/or the generation of harmful byproducts limit their application in clinical fields.…”