Stromal cells, composed of fibroblasts, microvascular endothelial cells, immune cells and inflammatory cells, are critical determinants of the mechanical properties and function of the heart and vasculature, and the mechanisms whereby these types of cells are activated are important to understand the progression of cardiovascular diseases. Emerging studies have suggested that the activation of autocrine and paracrine signaling pathways by stromal cell-derived growth factors, cytokines and bioactive molecules contributes to disease progression. Disruption of the stromal network will result in alterations in the geometry and function in these organs. Interventions targeting the stromal cells (eg, myofibroblasts, microvascular endothelial cells, inflammatory cells) by pharmacological agents or direct gene delivery/small interfering RNA would be potential novel therapeutic strategies to prevent/attenuate the progression of cardiovascular disorders. (Circ J 2010; 74: 1042 - 1050