Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin ␣ V subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin ␣ V subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125 I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF.Extracellular proteolysis is an essential physiological process that controls the immediate cellular environment and thus plays a key role in cellular behavior and survival (1). The members of the matrix metalloproteinase (MMP) 2 family of zinc-dependent endopeptidases are major mediators of extracellular proteolysis by promoting the degradation of extracellular matrix (ECM) components and cell surface-associated proteins (2, 3). Each one of these enzymes is negatively regulated by tissue inhibitors of metalloproteinases (TIMPs) (4) and is secreted as a zymogen (pro-MMPs) that is activated in the extracellular space (5-7). This mechanism is an important form of regulation of gelatinase activity and in consequence, highly significant for ECM homeostasis. Among the members of the MMP family, the metalloproteinase type 2 (MMP-2 or gelatinase A) is known to be a key player in many physiological and pathological processes, such as cell migration, inflammation, angiogenesis, and fibrosis (8 -11). Fibrotic disorders are typified by excessive connective tissue and ECM deposition that precludes normal healing of different tissues. ECM accumulation can be explained in two ways: increasing expression and deposition of connective tissue proteins and/or decreasing degradation of ECM proteins (12). Transforming growth factor type , a multifunctional cytokine, is strongly overexpressed, and it is associated to the pathogenesis of these diseases (...