In spite of observed differences at the interface between boon and either commercially pure titanium [Ti(cpi)] or titanium alloy (Ti-6Al-4V), the mechanism of such a response is ill understood. This prompted further investigation of the influence of similar metals on human bone-derived cells (HBDCs). This study investigated the influence of Ti(cpi) and its alloy on osteoblastic proteins formed by HBDCs grown for 5, 7, 10, and 14 days on these metals and compared them to cells grown on tissue culture polystyrene plates. Messenger RNA and translated proteins that form an array of osteogenic parameters were determined: alkaline phosphatase (ALP), thrombospondin, osteopontin, osteocalcin (OC), osteonectin (ON/SPARC), type I collagen (Col I) and bone sialoprotein (BSP). At the four predetermined time points, cells grown on either Ti(cpi) or Ti-6Al-4V generally expressed similar mRNA levels, while levels of their respective proteins differed. Cells on Ti(cpi) had peak levels for most proteins at day 7, whereas those on Ti-6Al-4V peaked at either day 5 and/or day 7. At day 5 cells grown on Ti-6Al-4V had higher levels of ALP, Col I, ON/SPARC, OC, and BSP than those in Ti(cpi); this difference was not maintained at later time points in culture. The differential regulation of proteins occurring between cells from the same patient grown on titanium and its alloy implies that HBDCs respond to small differences in the surface chemistry and/or microcrystallinity.