The corrosive titanium products in peri-implant tissues are a potential risk factor for peri-implantitis. There is very limited information available on the effect of the corrosion and wear products on the dental implant corrosion. Therefore, we determined the influence of Ti-ions and Ti-particles on Ti corrosion. Eighteen commercially pure-Ti-grade-2 discs were polished to mirror-shine. Samples were divided into six groups (n = 3) as a function of electrolytes; (A) Artificial saliva (AS), (B) AS with Ti-ions (the electrolyte from group A, after corrosion), (C) AS with Ti-particles 10 ppm (D) AS with Ti-particles 20 ppm, (E) AS with Ti-ions 10 ppm, and (F) AS with Ti-ions 20 ppm. Using Tafel’s method, corrosion potential (Ecorr) and current density (Icorr) were estimated from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data were used to construct Nyquist and Bode plots, and an equivalent electrical circuit was used to assess the corrosion kinetics. The corroded surfaces were examined through a 3D-white-light microscope and scanning electronic microscopy. The data demonstrated that the concentration of Ti-ions and corrosion rate (Icorr) are strongly correlated (r = 0.997, p = 0.046). This study indicated that high Ti-ion concentration potentially aggravates corrosion. Under such a severe corrosion environment, there is a potential risk of increased implant associated adverse tissue reactions.