Polyvinyl alcohol has the potential to be used in fuel cell membranes due to its chemical, mechanical, and membrane-forming capabilities, as well as its higher hydrophilicity and low methanol permeability. However, the pure PVA membrane has a lower proton conductivity than the NafionTM membrane. With the addition of some ceramic fillers, PVA can be a possible alternative to NafionTM membranes. Therefore, we used the solution method to prepare three polyvinyl alcohol-based composite membranes with the following compositions: a) 5 wt% PVA (polyvinyl alcohol), b) 5 wt% PVA/2 wt % PEG (polyethylene glycol)/wt.1% silicon dioxide (SiO2) nanoparticles, and c) 5 wt% PVA/2 wt% PEG/wt.1% clay powder. The membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX), oxidative stability, ion exchange capacity, water absorption characteristics, conductivity, and permeability. FITR, EDX, and SEM confirmed the successful fabrication of the composite membrane, while TGA demonstrated membrane thermal stability and other parameters relevant to fuel cell membranes. The methanol permeability of the membrane is pure 5 wt % PVA, 5 wt%PVA/2 wt%/1 wt% SiO2, and 5 wt% PVA/2 wt% PEG/wt.1% Clay measured 2.37 × 10−6 cm2/s, 2.89 × 10−6 cm2/s, and 1.57 × 10−6 cm2/s, respectively. The methanol permeability of 5 wt% PVA/2 wt% PEG/wt.1% Clay is better than of Nafion117 (5.16 × 10−6 cm2/s as reported). The membrane 5 wt% PVA/2 wt% PEG/1% Clay exhibits satisfactory levels of oxidative stability (RW% = 94.09 at 1.32 h), IEC (0.232 meq/g), conductivity (0.00432 S/cm), methanol permeability (1.57 × 10−6 cm2/s), selectivity (3.63 × 10−4 Ss/cm3), and better water uptake properties at fuel cell operating temperature. As a result, it is reasonable to expect that PVA-based modified membranes will outperform NafionTM membranes in the future.