Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in membrane receptor PKD1 or cation channel PKD2. TACAN (also named TMEM120A), recently reported as an ion channel in neuron cells for mechano and pain sensing, is also distributed in diverse non-neuronal tissues such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes we found that TACAN inhibited the channel activity of PKD2 gain-of-function mutant F604P. The first and last transmembrane domains of TACAN were found to interact with the PKD2 C- and N-terminal portions, respectively. We showed that the TACAN N-terminus acted as a blocking peptide and that TACAN inhibits the PKD2 function through the PKD2/TACAN binding. By patch clamping in mammalian cells, we found that TACAN inhibits both the single channel conductance and open probability of PKD2 and mutant F604P. Further, PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechano sensitivity of the PKD2/TACAN channel complex.