Bismuth (Bi) is increasingly used in several industrial applications including the production of alloys, drugs, cosmetics and munitions formulations. However, little information is available on the environmental fate and ecotoxicological effects of Bi. The present study describes 14 days acute toxicity of Bi, added as Bi citrate to a natural sandy soil, to the adult earthworm Eisenia andrei. Total measured Bi concentrations were 298.0, 399.5, 431.0, and 469.5 mg Bi/kg dry soil. Data indicates that Bi was toxic to Eisenia andrei, as determined by LC 50 and LOEC, i.e., 416.0 and 399.5 mg Bi/kg dry soil, respectively. At 14 days in the presence of Eisenia andrei the bioaccessible fraction of Bi in soil, as determined in KNO 3 aqueous soil extracts, increased by a factor ranging from 1.6 to 30.0 compared to those measured at the beginning of experiment. Moreover, this study shows that an increase in pH caused by the presence of earthworm in soil was accompanied by increase in Bi bioaccessibility and consequently toxicity. For example, when Bi bioaccessibility increased from 0.262 to 7.516 mg Bi/kg dry soil, the mortality rate increased from 0 to 79%. Assuming that there were at least two routes by which Eisania andrei enhanced Bi bioaccessibility; one route was guided by the mobility, the biochemical (mucus) and the biological (bacteria) interactions of Eisenia andrei with soil constituents, and the other route was marked by the death of earthworms and the release of the accumulated Bi from the carcass.