Based on early reports of the efficacy of hydroxychloroquine sulfate (HCQS) to inhibit SARS-CoV-2 viral replication in vitro, and since severe pulmonary involvement is the major cause of COVID-19 mortality, we assessed the safety and efficacy of aerosolized HCQS (aHCQS) therapy in animals and humans. In a Phase 1 study of aHCQS in healthy volunteers, doses up to 50 mg were well tolerated and estimated epithelial lining fluid concentrations immediately after inhalation (>2,000 uM) exceeded the in vitro concentrations needed for suppression of viral replication (>=119 uM). A study in rats comparing HCQS solution administered orally (13.3 mg/kg) and by intratracheal installation (IT 0.18 mg/kg, <5% of oral dose) demonstrated that at 2 minutes, IT administration was associated with 5X higher mean hydroxychloroquine (HCQ) concentrations in the lung (IT: 49.5 +/- 6.5 ug HCQ/g tissue, oral: 9.9 +/- 3.4; p<0.01). A subsequent study of IT and intranasal HCQS in the Syrian hamster model of SARS-CoV-2 infection, however, failed to show clinical benefit. We conclude that aHCQS alone is unlikely to be effective for COVID-19, but based on our aHCQS pharmacokinetics and current viral entry data, adding oral HCQS to aHCQS, along with a transmembrane protease inhibitor, may improve efficacy.