The gamma distribution is commonly used to model environmental data. However, rainfall data often contain zero observations, which violates the assumption that all observations must be positive in a gamma distribution, and so a gamma model with excess zeros treated as a binary random variable is required. Rainfall dispersion is important and interesting, the confidence intervals for the variance of a gamma distribution with excess zeros help to examine rainfall intensity, which may be high or low risk. Herein, we propose confidence intervals for the variance of a gamma distribution with excess zeros by using fiducial quantities and parametric bootstrapping, as well as Bayesian credible intervals and highest posterior density intervals based on the Jeffreys’, uniform, or normal-gamma-beta prior. The performances of the proposed confidence interval were evaluated by establishing their coverage probabilities and average lengths via Monte Carlo simulations. The fiducial quantity confidence interval performed the best for a small probability of the sample containing zero observations (δ) whereas the Bayesian credible interval based on the normal-gamma-beta prior performed the best for large δ. Rainfall data from the Kiew Lom Dam in Lampang province, Thailand, are used to illustrate the efficacies of the proposed methods in practice.