This work describes the development of a novel electrochemical sensor based on electrodeposition of copper oxide nanoparticles onto carbon nanoparticle (CNP) film modified electrode for the analysis of the anti‐HIV drug, nevirapine (NEV). The electrochemical experiments were performed using linear sweep and cyclic voltammetry. Atomic force microscopy was applied for surface characterization of the deposited modifier film (CuO‐CNP) on glassy carbon electrode (GCE). No oxidation peak was observed for NEV on the bare GCE, but both CNP‐GCE and CuO‐CNP‐GCE showed a distinctive anodic response towards NEV with considerable enhancement (276‐fold and 350‐fold, respectively) compared to CuO‐GCE. The mechanism of the electrocatalytic process on the modified electrode surface was investigated by cyclic and linear sweep voltammetry at various potential sweep rates and pHs of the buffer solutions. The modified electrode exhibited linear dynamic range in three concentration intervals (0.1–0.8, 1–10 and 10–100 µM) with a detection limit of 66 nM. The stability, reproducibility, and repetitive usability exhibited by the proposed modified electrode are good enough to make it a suitable sensor for the determination of NEV in real samples with complex matrices such as human blood serum.