In recent ocean investigations using underwater sonar transducers, low-frequency and wideband long-range sonar systems have been demanded for strong acoustic radiation and improved detective resolution capability in shallow-sea regions. We developed a disk bender transducer with a dual radiation surface as a miniaturized, light weight, low-frequency, and high-power transducer. However, there were problems in that the fractional bandwidth was small because the radiation surface was far smaller than the radiated wavelength, and the acoustic load per unit radiation area was small. Therefore, we suggest a technique to enable a wideband sonar array using differential connections of multiple disk bender transducers with different resonance frequencies to solve these problems. In this paper, we report results that endorse the above-mentioned technique obtained by finite-element method (FEM) analysis. The results confirm that this technique produces a wideband transducer array with low-frequency and high-power characteristics. We found that a wideband characteristic of more than 100% could be achieved with as a 6 dB fractional bandwidth by differential connection of disk bender transducers with three different resonance frequencies. In addition, we found that a superior horizontally oriented directivity was provided by locating the transducers in a plane symmetrical to the horizontal plane.