Roots are important for plant anchoring, water and nutrient absorption, and other physiological processes. Gravity is a primary determinant of the spatial distribution of plant roots in the soil. Therefore, in-depth understanding of the molecular mechanisms and biochemical networks of root responses to gravity has both theoretical and practical significance in guiding the genetic improvement of plants. Gravitropism, the process through which plants sense the direction of gravity and respond by making the roots grow downward and the stem grow upward, has been widely studied in roots. The perception of gravity and the gravitational growth of roots, key steps in root growth and development, are regulated by auxins and other factors. Here, we review the latest progress in the regulation of root gravitropism by hormone signals and environmental factors from a molecular perspective, and look forward to the direction of future research on root gravitropism.