Lateral roots (LRs) are an important part of plant root systems. In dicots, for example, after plants adapted from aquatic to terrestrial environments, filamentous pseudorhizae evolved to allow nutrient absorption. A typical plant root system comprises a primary root, LRs, root hairs, and a root cap. Classical plant roots exhibit geotropism (the tendency to grow downward into the ground) and can synthesize plant hormones and other essential substances. Root vascular bundles and complex spatial structures enable plants to absorb water and nutrients to meet their nutrient quotas and grow. The primary root carries out most functions during early growth stages but is later overtaken by LRs, underscoring the importance of LR development water and mineral uptake and the soil fixation capacity of the root. LR development is modulated by endogenous plant hormones and external environmental factors, and its underlying mechanisms have been dissected in great detail in Arabidopsis, thanks to its simple root anatomy and the ease of obtaining mutants. This review comprehensively and systematically summarizes past research (largely in Arabidopsis) on LR basic structure, development stages, and molecular mechanisms regulated by different factors, as well as future prospects in LR research, to provide broad background knowledge for root researchers.
Brassinosteroids (BRs) regulate of maize ( Zea mays L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.
Analysis of PCST1 expression characteristics and the role of PCST1 in response to osmotic stress in Arabidopsis thaliana . The structure of PCST1 was analyzed using Bioinformatics method. Real-time PCR, GUS tissue localization and subcellular localization were adopted to analyze the expression pattern of PCST1 in Arabidopsis. To validate the transgenic positive strain of PCST1 using Real-time PCR, overexpression experiments were performed in wild type. Full-length cDNA was cloned and connected into a binary vector with 35S promoter, and the construction was transformed into wild type. With NaCl and mannitol treatments, the germination rate, green leaves rate, physiological indexes were carried out and counted in Arabidopsis with overexpression of PCST1 and T-DNA insertion mutants. The molecular mechanism of PCST1 in response to osmotic stress in Arabidopsis was analyzed. Based on the bioinformatic analysis, PCST1 is a hydrophobin with 403 amino acids, and the molecular weight is 45.3236 KDa. It contains only the START (the lipid/sterol – binding StAR – related lipid transfer protein domains) conservative domain. PCST1 possesses phosphatidylcholine binding sites and transmembrane region. Expression pattern analysis showed that expression of PCST1 increased with time. The PCST1 widely expressed in Arabidopsis, including roots, axils of stem leaves, flowers (sepal, conductive tissue of the petal, thrum, anther and stigmas), and the top and basal parts of the siliquas. It mainly localized in cell membrane. The overexpression of PCST1 enhanced the sensitivity to osmotic stress in Arabidopsis based on the germination rate. While expression of PCST1 decreased, and the sensitivity to osmotic stress had no obvious change in Arabidopsis. Its molecular mechanism study showed, that PCST1 response to osmotic stress resistance by regulating the proline, betaine synthesis, as well as the expression of key genes SOS, NCED, CIPK . PCST1 is composed of 403 amino acids. The START conservative domain, a transmembrane structure, the phosphatidyl choline binding sites are contained in PCST1. It is localized in cytoplasmic membrane. The PCST1 widely expressed in the root, leaf, flower and siliquas. NaCl and mannitol suppressed the expression of PCST1 and PCST1 can negatively control action of Arabidopsis in the osmotic stress. PCST1 regulates the synthetic pathway of proline, betaine and the expression of SOS, NCED and CIPK in response to the osmotic stress resistance.
Root gravitropism is important for anchorage and exploration of soil for water and nutrients. It affects root architecture, which is one of the elements that influence crop yield. The mechanism of primary root gravitropism has been widely studied, but it is still not clear how lateral root gravitropism is regulated. Here, in this study, we found that Topoisomerase I α (TOP1α) repressed lateral root gravitropic growth, which was opposite to the previous report that TOP1α maintains primary root gravitropism, revealing a dual function of TOP1α in root gravitropism regulation. Further investigation showed that Target of Rapamycin (TOR) was suppressed in columella cells of lateral root to inhibit columella cell development, especially amyloplast biosynthesis. Our findings uncovered a new mechanism about lateral root gravitropism regulation, which might provide a theoretical support for improving agricultural production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.