In order to ensure safe, efficient and controlled gene delivery to skin, the improvement of delivery methods together with proper design of DNA is required. Non-viral delivery methods, such as gene electrotransfer, and the design of tissue-specific promoters are promising tools to ensure the safety of gene delivery to the skin. In the scope of our study, we evaluated a novel skin-specific plasmid DNA with collagen (COL) promoter, delivered to skin cells and skin tissue by gene electrotransfer. In vitro, we determined the specificity of the COL promoter in fibroblast cells. The specific expression under the control of COL promoter was obtained for the reporter gene DsRed as well as for therapeutic gene encoding cytokine IL-12. In vivo, the plasmid with COL promoter encoding the reporter gene DsRed was efficiently transfected to mouse skin. It resulted in the notable and controlled manner, however, in lower and shorter expression, compared to that obtained with ubiquitous promoter. The concentration of the IL-12 in the skin after the in vivo transfection of plasmid with COL promoter was in the same range as after the treatment in control conditions (injection of distilled water followed by the application of electric pulses). Furthermore, this gene delivery was local, restricted to the skin, without any evident systemic shedding of IL-12. Such specific targeting of skin cells, observed with tissue-specific COL promoter, would improve the effectiveness and safety of cutaneous gene therapies and DNA vaccines.