The role of dominant transforming p53 in carcinogenesis is poorly understood. Our previous data suggested that aberrant p53 proteins can enhance tumorigenesis and metastasis. Here, we examined potential mechanisms through which gain-of-function (GOF) p53 proteins can induce motility. Cells expressing GOF p53 -R175H, -R273H and -D281G showed enhanced migration, which was reversed by RNA interference (RNAi) or transactivation-deficient mutants. In cells with engineered or endogenous p53 mutants, enhanced migration was reduced by downregulation of nuclear factor-kappaB2, a GOF p53 target. We found that GOF p53 proteins upregulate CXC-chemokine expression, the inflammatory mediators that contribute to multiple aspects of tumorigenesis. Elevated expression of CXCL5, CXCL8 and CXCL12 was found in cells expressing oncogenic p53. Transcription was elevated as CXCL5 and CXCL8 promoter activity was higher in cells expressing GOF p53, whereas wild-type p53 repressed promoter activity. Chromatin immunoprecipitation assays revealed enhanced presence of acetylated histone H3 on the CXCL5 promoter in H1299/R273H cells, in agreement with increased transcriptional activity of the promoter, whereas RNAi-mediated repression of CXCL5 inhibited cell migration. Consistent with this, knockdown of the endogenous mutant p53 in lung cancer or melanoma cells reduced CXCL5 expression and cell migration. Furthermore, short hairpin RNA knockdown of mutant p53 in MDA-MB-231 cells reduced expression of a number of key targets, including several chemokines and other inflammatory mediators. Finally, CXCL5 expression was also elevated in lung tumor samples containing GOF p53, indicating relevance to human cancer. The data suggest a mechanistic link between GOF p53 proteins and chemokines in enhanced cell motility.
Electrospinning is often used to create scaffolding as a biomimetic of the extracellular matrix of tissues. A frequent limitation of this technique for three-dimensional tissue modeling is poor cell infiltration throughout the void volume of scaffolds. Here, we generated low-temperature electrospun silk scaffolds and compared these to conventional electrospun silk scaffolds in terms of mechanical properties, void volume, cell infiltration, cell viability and potential to support mucosal models under three-dimensional culture conditions. Low-temperature electrospun silk scaffolds supported fibroblast attachment and infiltration throughout the volume of the scaffolds, while conventional electrospun scaffolds exhibited limited cell infiltration with fibroblasts attaching exclusively to the seeding surface of the scaffolds. The porosity of low-temperature electrospun scaffolds was 93% compared to 88% of conventional electrospun silk scaffolds. Uniaxial tensile testing showed a 3.5 fold reduction in strength of low-temperature electrospun silk compared to the conventional in terms of peak stress and modulus, but no significant change in strain at break. Mucosal modeling with fibroblast-keratinocyte or fibroblast-carcinoma co-cultures showed similar results, with cell infiltration occurring only in low-temperature electrospun scaffolds. Cell viability was confirmed using live/dead staining after 21 days in culture. Furthermore, low-temperature electrospun silk scaffolds were able to support keratinocyte differentiation, as judged by involucrin immunoreactivity. The low-temperature electrospun silk scaffold that we have developed eliminates the limitation of electrospun silk scaffolds in terms of cell infiltration and, therefore, can potentially be used for a wide range of tissue engineering purposes ranging from in vitro tissue modeling to in vivo tissue regeneration purposes.
It is critically important to study head and neck squamous cell carcinoma tumorigenic mechanisms in order to gain a better understanding of tumor development, progression, and treatment. Unfortunately, a representative three-dimensional (3D) model for these evaluations has yet to be developed. The purpose of this study was to replicate tumor extracellular matrix (ECM) morphology utilizing electrospinning technology. First, the tumor ECM was evaluated by decellularizing tumor samples and analyzing the fibrous structure of the ECM by scanning electron microscopy. Cryogenic electrospun silk scaffolds were then fabricated to mimic the tumor ECM, and were found to be similar in fiber orientation and fiber dimensions to the native tumor ECM. Tumor cells were cultured on these ECM mimicking scaffolds and compared to an in vivo model of the same derivative human tumor in terms of proliferation and differentiation. The tumor cells in the 3D model show similar phenotypes to those found in vivo, contrasting to the same cells grown in two-dimensional (2D) culture. The sensitivity of the tumor cells to paclitaxel was compared between 2D culture and 3D culture. The results indicate that increased drug concentrations, orders of magnitude higher than the IC90 for 2D culture, had minimal effects on HN12 cell viability in the 3D model. In conclusion, an in vitro tumor model has been developed that will allow for a better understanding of tumor biology and aid chemotherapeutic drug development and accurate evaluation of drug efficacy.
Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20–200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such as necroptosis and autophagy. Our results point at necrosis as the primary mechanism of cell death induced by nsPEF in B16F10 cells. We finally compared the antitumor immunity in animals treated with nsPEF (750, 200-ns, 25 kV/cm, 2 Hz) with animals were tumors were surgically removed. Compared to the naïve group where all animals developed tumors, nsPEF and surgery protected 33% (6/18) and 28.6% (4/14) of the animals, respectively. Our data suggest that, under our experimental conditions, the local ablation by nsPEF restored but did not boost the natural antitumor immunity which stays dormant in the tumor-bearing host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.