Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 V) and delta waves (75-140 V) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions.fMRI ͉ neuroimaging ͉ sleep physiology ͉ slow oscillation D uring the deepest stage of nonrapid eye movement (NREM) sleep, also referred to as slow wave sleep (SWS) in humans (stage 3-4 of sleep), spontaneous brain activity is organized by specific physiological rhythms, the neural correlates of which have been described in animals (1). Unit recordings have shown that neuronal activity during SWS is characterized by a fundamental oscillation of membrane potential. This so-called ''slow oscillation'' (Ͻ1 Hz) is recorded in all major types of neocortical neurons during SWS and is composed of a depolarizing phase, associated with important neuronal firing (''up state''), followed by a hyperpolarizing phase during which cortical neurons remain silent for a few hundred milliseconds (''down state'') (2, 3). The slow oscillation occurs synchronously in large neuronal populations in such a way that it can be reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves (4).Delta rhythm (1-4 Hz) is another characteristic oscillation of NREM sleep. The neural underpinnings of delta rhythm remain uncertain, however. In the dorsal thalamus, a clock-like delta rhythm is generated by the interplay of two intrinsic membrane currents, although another delta rhythm survives complete thalamectomy, suggesting a cortical origin (1).In humans, a slow oscillation was identified on s...