Simple, stable, easily-fabricated smooth metallic nanofilm can improve the imaging intensity and imaging contrast. However, its application in micrometerscale cells has not been popularized due to the lack of full understanding of their related fluorescence properties. In this study, fluorescence enhancement of cell imaging on smooth Au nanofilm was investigated over a micrometer-scale range via employment of the optical sectioning method available with a laser scanning confocal fluorescence microscope. The fluorescence enhancement reduced with the distance away from the surface of metallic nanofilm, and this distance dependence was determined by the factors of numerical aperture, dye−substrate distance, and emission wavelength. In addition, distance-dependent fluorescence lifetime images of cells were also measured to study the interaction between fluorophores and metallic film. The enhancement effect of Au nanofilm on fluorescence cell imaging can be induced not only by the standing wave formed by the reflected light and exciting light but also by the interaction between fluorophore and surface plasmons on the metallic nanofilm. Our study on smooth metallic nanofilm should pave the way for utilizing its uniform fluorescence enhancement characteristic for biological imaging.