2004
DOI: 10.1007/s00209-003-0607-y
|View full text |Cite
|
Sign up to set email alerts
|

Topological hypercovers and 1 -realizations

Abstract: We show that if U * is a hypercover of a topological space X then the natural map hocolim U * →X is a weak equivalence. This fact is used to construct topological realization functors for the A 1 -homotopy theory of schemes over real and complex fields. In an appendix, we also prove a theorem about computing homotopy colimits of spaces that are not cofibrant.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
107
0
3

Year Published

2004
2004
2021
2021

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 117 publications
(113 citation statements)
references
References 20 publications
3
107
0
3
Order By: Relevance
“…One application of the results on hypercovers is to realization functors from the homotopy theory of schemes-this is treated in the papers [DI1,Is]. In Section 8 we give a few more applications.…”
Section: Organization Of the Papermentioning
confidence: 99%
See 1 more Smart Citation
“…One application of the results on hypercovers is to realization functors from the homotopy theory of schemes-this is treated in the papers [DI1,Is]. In Section 8 we give a few more applications.…”
Section: Organization Of the Papermentioning
confidence: 99%
“…The above theorem is crucial to the construction ofétale realization functors for A 1 -homotopy theory [Is], as well as the analogous question about topological realization functors [DI1].…”
Section: Introductionmentioning
confidence: 99%
“…It seems it first appeared in [5] in the case of proper maps, and it has been rediscovered many times since. The reader can find proofs in [14] for the closed case and in [2] or [6] for the locally split case. Example 1.19.…”
Section: Betti Numbers Of Sub-pfaffian Sets and Of Hausdorff Limitsmentioning
confidence: 99%
“…Ensuite, le fait que le foncteur oub soit additif résulte simplement du fait qu'il commute aux produits (finis). (11) , essentiellement surjectif et plein. De plus, si E est un objet de SH T naïve (S , I), la catégorie des relèvements de E dans SH T (S , I) est équivalente à la catégorie ponctuelle (autrement dit, le relèvement est bien défini à isomorphisme unique près) si et seulement si…”
Section: Riou (J)unclassified
“…[10] et [11]). Enfin, dans la section 6, on propose une définition d'une variante « naïve » de la catégorie SH T (S , I) : admettant une description très simple à partie de la catégorie homotopique pointée H • (S , I), cette catégorie s'avère être équivalente au quotient de SH T (S , I) par l'idéal de morphismes (de carré nul) constitué par les morphismes dits « stablement fantômes ».…”
unclassified