2013
DOI: 10.1371/journal.pcbi.1003234
|View full text |Cite
|
Sign up to set email alerts
|

ToPS: A Framework to Manipulate Probabilistic Models of Sequence Data

Abstract: Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
15

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
2
1
1

Relationship

2
6

Authors

Journals

citations
Cited by 10 publications
(20 citation statements)
references
References 30 publications
0
5
0
15
Order By: Relevance
“…CodAn uses two different architectures for analysing transcripts, one for full and one for partial transcripts (Figure 5. Both architectures are described using Generalized Hidden Markov Models implemented using the ToPS probabilistic framewok [12]. Of note, we partition our probabilistic model in GG content specific sub-models [28].…”
Section: Algorithm Implementationmentioning
confidence: 99%
See 1 more Smart Citation
“…CodAn uses two different architectures for analysing transcripts, one for full and one for partial transcripts (Figure 5. Both architectures are described using Generalized Hidden Markov Models implemented using the ToPS probabilistic framewok [12]. Of note, we partition our probabilistic model in GG content specific sub-models [28].…”
Section: Algorithm Implementationmentioning
confidence: 99%
“…CodAn uses ToPS [12] to implement the Generalized Hidden Markov Model architectures, Python (v.3.6.8) and Perl (v5.26.1) scripts to prepare and process data for the ToPS probabilistic framework.…”
Section: Algorithm Implementationmentioning
confidence: 99%
“…Afirma-se que, se for possível modelar sequências de dados categóricos com precisão, então é possível fazer boas previsões e planejamento ótimo nos processos de decisão. Kashiwabara et. al.…”
Section: Trabalhos Relacionados E Contextualizaçãounclassified
“…Essa separação é possível, pois toda a construção e composição dos modelos probabilísticos é feita no ToPS (Toolkit of Probabilistic Models of Sequences). ToPS (Kashiwabara et al, 2013) é um arcabouço para manipulação de modelos probabilísticos que representam sequências de símbolos.…”
Section: Sumáriounclassified
“…publicação do ToPS(Kashiwabara et al, 2013) disponibilizou diversos modelos probabilísticos, entre os quais destacam-se para esse trabalho as Cadeias de Markov, Cadeias Ocultas de Markov (HMM) e a Cadeias Ocultas de Markov Generalizadas (GHMM). Após a publicação, o arcabouço continuou sendo base para novos projetos de pesquisa que adicionaram novos modelos.…”
unclassified