In this paper, we report the complete mitochondrial genome of the northern smooth-tailed treeshrew Dendrogale murina, which was sequenced for the first time using the Illumina next-generation sequencing (NGS) technology. The total length of the mitochondrial genome is 16,844–16,850 bp and encodes 37 genes, including two ribosomal RNAs (rRNAs) 12S and 16S, 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and a D-loop in the characteristic arrangement of family Tupaiidae (Mammalia: Scandentia). The overall base composition of the complete mitochondrial DNA is A (33.5%), C (25.5%), G (13.9%), and T (27.1%). Phylogenetic analysis of Scandentia mitochondrial genomes showed a classic pattern, which was revealed previously while using individual phylogenetic markers. The result of the current study is consistent with one based on the latest morphological studies, with the basal position of Ptilocercus and Dendrogale sister to the rest of the Tupaiidae genera. The divergence time of the Dendrogale genus is estimated as Eocene–Oligocene, with the mean value of 35.8 MYA, and the Ptilocercus genus probably separated at about 46.3 MYA. We observe an increase in the age of all nodes within the Scandentia, except for a decrease in the age of separation of Ptilocercus. This result can be explained both by the addition of new mitochondrial genome data in the analysis and the usage of new calibration points from recently published data.