Design and screening electrocatalysts for gas evolution reactions suffer from scanty understanding of multi-phase processes at the electrode-electrolyte interface. Due to the complexity of multi-phase interface, it is still a great challenge to capture gas evolution dynamics under operando condition to precisely portray the intrinsic catalytic performance of interface. Here, we establish a single particle imaging method to real time monitor a potentialdependent vertical motion or hopping of electrocatalysts induced by electrogenerated gas nanobubbles. The hopping feature of single particle is closely correlated with intrinsic activities of electrocatalysts, thus is developed to be an indicator to evaluate gas evolution performance of various electrocatalysts. This optical indicator diminishes interferences from heterogeneous morphologies, non-Faradaic processes and parasitic side reactions that are unavoidable in conventional electrochemical measurements, therefore enables precise evaluation and highthroughput screening of catalysts for gas evolution systems.