The complex interactions from anthropogenic activities, climate change, sedimentation and the input of wastewater has significantly affected the aquatic environment and entire ecosystem. Over the years, the researchers have investigated water monitoring approaches in terms of traditional monitoring or even integrated systems to handle such an environmental assessment and predictions based on warning systems. However, research into the selection and optimisation of water monitoring systems by the combination of parallel approach in terms of sampling techniques, process analysis and results is limited. The research objectives of the present study are to evaluate the existing water monitoring systems based on the latest approach and then provide insights into factors affecting sensor implementation at sampling locations. Here we summarize the advancement and trends of various water monitoring systems as well as the suitability of sensor placement in the area by reviewing more than 300 papers published between 2011 and 2022. The research highlights the urgency of an integrative approach with regard to water monitoring systems including water quality model and water quantity model. A framework is proposed to incorporate all water monitoring approaches, sampling techniques, and predictive models to provide comprehensive information about environmental assessment. It was observed that the urgency of model-based approaches as verification and fusion of data assemble has the ability to improve the performances of the systems. Furthermore, integrated systems with the inclusion of a separate modeling approach through integrated -semi-mechanistic models, data science and artificial intelligence are recommended in the future. Overall, this study provides guidelines for achieving standardized water management by implementing integrated water monitoring systems INDEX TERMS infrastructure, integrated monitoring, water monitoring system, modelling, water quality