Control analysis of periodic phenomena in biological systemsKholodenko, B.N.; Demin, O.V.; Westerhoff, H.V.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Download date: 10 May 2018
Control Analysis of Periodic Phenomena in Biological SystemsBoris N. Kholodenko,* , † Oleg V. Demin, ‡ and Hans V. Westerhoff §,| Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson UniVersity, 1020 Locust Street, Philadelphia, PennsylVania 19107, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State UniVersity, 119899 Moscow, Russia, Department of Microbial Physiology, Free UniVersity, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands, and E. C. Slater Institute, Biocentrum, UniVersity of Amsterdam, Plantage Muidergracht 12, The Netherlands ReceiVed: July 31, 1996 In Final Form: January 7, 1997 X Principles of the control and regulation of steady-state metabolic systems have been identified in terms of the concepts and laws of metabolic control analysis (MCA). With respect to the control of periodic phenomena MCA has not been equally successful. This paper shows why in case of autonomous (self-sustained) oscillations for the concentrations and reaction rates, time-dependent control coefficients are not useful to characterize the system: they are neither constant nor periodic and diverge as time progresses. This is because a controlling parameter tends to change the frequency and causes a phase shift that continuously increases with time. This recognition is important in the extension of MCA for periodic phenomena. For oscillations that are enforced with an externally determined frequency, the time-dependent control coefficients over metabolite concentration and fluxes (reaction rates) are shown to have a complete meaning. Two such time-dependent control coefficients are defined for forced oscillations. One, the so-called periodic control coefficient, measures how the stationary periodic movement depends on the activities of one of the enzymes. The other, the socalled transient control coefficient, measures the control over the transition of the system between two stationary oscillations, as induced by a change in one of the enzyme activities. For forced oscillations, the two control coefficients become equal as time tends to infinity. N...