Optimization-based design Concrete is freely formable. And reinforcements can be placed anywhere in the concrete. Nevertheless, this potential is rarely used. Reinforced concrete structures are commonly rectangular shaped with reinforcement meshes parallel to the surfaces and thus possess large mass. This article shows how topological optimization can be used to create concrete structures affine to the flux of forces. Material consumption decreases rapidly. External shaping, effective cross-section designs, and trajectory-oriented reinforcement layouts are presented. First the very basic equations of the associated structural optimization problem are derived. Then a novel material-specific control mechanism towards tensile or compressive dominant designs is introduced. It is discussed how this enables to account for structural robustness. Numerous examples illustrate application on bridges, pylons, shells, beams, girder grids or support details and quantify the potential material reduction in concrete construction arising thereof.