FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit embryogenesis and enter seedling developmental programs. When ectopically expressed, these genes promote embryo programs in seedlings. We report on chromatin immunoprecipitation-tiling array experiments to globally map binding sites for FUS3 that, along with other published work to assess transcriptomes in response to FUS3, allow us to determine direct from indirect targets. Many transcription factors associated with embryogenesis are direct targets of FUS3, as are genes involved in the seed maturation program. FUS3 regulates genes encoding microRNAs that, in turn, control transcripts encoding transcription factors involved in developmental phase changes. Examination of direct targets of FUS3 reveals that FUS3 acts primarily or exclusively as a transcriptional activator. Regulation of microRNA-encoding genes is one mechanism by which FUS3 may repress indirect target genes. FUS3 also directly up-regulates VP1/ABI3-LIKE1 (VAL1), encoding a B3 domain protein that functions as a repressor of transcription. VAL1, along with VAL2 and VAL3, is involved in the transition from embryo to seedling development. Many genes are responsive to FUS3 and to VAL1/VAL2 but with opposite regulatory consequences. The emerging picture is one of complex cross talk and interactions among embryo transcription factors and their target genes.