Game theory is an innovative idea to understanding human behaviors from economics to political science. However, due to the bounded rationality of game players, game theory alone cannot fully explain human behavior and should complement other key concepts championed by the behavioral disciplines. This paper provides a foundation for decision-making process from the viewpoint of game theory and behavioral science approach. First, we develop a new behavioral learning game model to examine how bounded rationality is exhibited in the game player's cognitive capabilities. Second, we apply the developed game model to operate the socio-physical Internet of Things (IoT) system. Finally, we study how to effectively negotiate between players who, though interested in their own welfare, are also willing to consider other players in the IoT system. The main contribution of our work lies in the fact that we shed some new light on the interplay between the game player's selfishness and the public interest. We believe that our approach will open a new door to exploring the impact of social behavior on networking.