This paper deals with the problem of multi-agent learning of a population of players, engaged in a repeated normalform game. Assuming boundedly-rational agents, we propose a model of social learning based on trial and error, called "social reinforcement learning". This extension of well-known Q-learning algorithm, allows players within a population to communicate and share their experiences with each other. To illustrate the effectiveness of the proposed learning algorithm, a number of simulations on the benchmark game of "Battle of Sexes" has been carried out. Results show that supplementing communication to the classical form of Q-learning, significantly improves convergence speed towards Nash equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.