Recent experiments and kinetic Monte Carlo (KMC) simulations [H. Greve et al., Appl. Phys. Lett. 88, 123103 (2006), L. Rosenthal et al., J. Appl. Phys. 114, 044305 (2013] demonstrated that physical vapor co-deposition of a metal alloy (Fe-Ni-Co) and a polymer (Teflon AF) is a suitable method to grow magnetic nanocolumns in a self-organized one-step process. While only thermal sources have been used so far, in this work, we analyze the feasibility of this process for the case of a sputtering source. For that purpose, we extend our previous simulation model by including a process that takes into account the influence of ions impinging on the substrate. The simulation results predict that metal nanocolumn formation should be possible. Furthermore, we show that the effect of ions that create trapping sites for the metal particles is to increase the number of nanocolumns.