Towards understanding the runtime configuration management of do-it-yourself content delivery network applications over public clouds, Future Generation Computer Systems (2014), http://dx.doi.org/10.1016/j.future. 2013.12.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Towards Understanding the Runtime Configuration Management of Do-It-Yourself Content Delivery NetworkApplications over Public Clouds
AbstractCloud computing is a new paradigm shift which enables applications and related content (audio, video, text, images, etc.) to be provisioned in an on-demand manner and being accessible to anyone anywhere in the world without the need for owning expensive computing and storage infrastructures. Interactive multimedia content-driven applications in the domains of healthcare, aged-care, and education have emerged as one of the new classes of big data applications. This new generation of applications need to support complex content operations including production, deployment, consumption, personalisation, and distribution. However, to efficiently provision these applications on the Cloud data centres, there is a need to understand their run-time resource configurations. For example: (i) where to store and distribute the content to and from driven by end-user Service Level Agreements (SLAs)? (ii) how many content distribution servers to provision? and (iii) what Cloud VM configuration (number of instances, types, speed, etc.) to provision? In this paper, we present concepts and factors related to engineering such content-driven applications over public Clouds. Based on these concepts and factors, we propose a performance evaluation methodology for quantifying and understanding the runtime configuration these classes of applications. Finally, we conduct several benchmark driven experiments for validating the feasibility of the proposed methodology.