Given the continually increasing amount of commercial Cloud services in the market, evaluation of different services plays a significant role in cost-benefit analysis or decision making for choosing Cloud Computing. In particular, employing suitable metrics is essential in evaluation implementations. However, to the best of our knowledge, there is not any systematic discussion about metrics for evaluating Cloud services. By using the method of Systematic Literature Review (SLR), we have collected the de facto metrics adopted in the existing Cloud services evaluation work. The collected metrics were arranged following different Cloud service features to be evaluated, which essentially constructed an evaluation metrics catalogue, as shown in this paper. This metrics catalogue can be used to facilitate the future practice and research in the area of Cloud services evaluation. Moreover, considering metrics selection is a prerequisite of benchmark selection in evaluation implementations, this work also supplements the existing research in benchmarking the commercial Cloud services.Comment: 10 pages, Proceedings of the 13th ACM/IEEE International Conference on Grid Computing (Grid 2012), pp. 164-173, Beijing, China, September 20-23, 201
Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons.
Cloud Computing, as one of the most promising computing paradigms, has become increasingly accepted in industry. Numerous commercial providers have started to supply public Cloud services, and corresponding performance evaluation is then inevitably required for Cloud provider selection or cost-benefit analysis. Unfortunately, inaccurate and confusing evaluation implementations can be often seen in the context of commercial Cloud Computing, which could severely interfere and spoil evaluation-related comprehension and communication. This paper introduces a taxonomy to help profile and standardize the details of performance evaluation of commercial Cloud services. Through a systematic literature review, we constructed the taxonomy along two dimensions by arranging the atomic elements of Cloud-related performance evaluation. As such, this proposed taxonomy can be employed both to analyze existing evaluation practices through decomposition into elements and to design new experiments through composing elements for evaluating performance of commercial Cloud services. Moreover, through smooth expansion, we can continually adapt this taxonomy to the more general area of evaluation of Cloud Computing.
This article surveys the past, present, and future trends of counseling in China. Historically, mental health problems were addressed within the family. Currently, psychotherapy from trained practitioners is available on a limited basis, at least in urban settings. The challenge of mental health in China is tremendous, and the efforts to meet that challenge are encouraging. The authors recommend that in the future, prevention and intervention services be offered that are ecosystemic, strengths‐based, and culturally appropriate.
Given the diversity of commercial Cloud services, performance evaluations of candidate services would be crucial and beneficial for both service customers (e.g. cost-benefit analysis) and providers (e.g. direction of service improvement). Before an evaluation implementation, the selection of suitable factors (also called parameters or variables) plays a prerequisite role in designing evaluation experiments. However, there seems a lack of systematic approaches to factor selection for Cloud services performance evaluation. In other words, evaluators randomly and intuitively concerned experimental factors in most of the existing evaluation studies. Based on our previous taxonomy and modeling work, this paper proposes a factor framework for experimental design for performance evaluation of commercial Cloud services. This framework capsules the state-of-the-practice of performance evaluation factors that people currently take into account in the Cloud Computing domain, and in turn can help facilitate designing new experiments for evaluating Cloud services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.