Let $(\{f_n\}_{n=1}^\infty, \{\tau_n\}_{n=1}^\infty)$ and $(\{g_n\}_{n=1}^\infty, \{\omega_n\}_{n=1}^\infty)$ be unbounded continuous p-Schauder frames ($0<p<1$) for a disc Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus\{0\}$, we show that \begin{align}\label{UB} \|\theta_f x\|_0\|\theta_g x\|_0 \geq \frac{1}{\left(\displaystyle\sup_{n,m \in \mathbb{N} }|f_n(\omega_m)|\right)^p\left(\displaystyle\sup_{n, m \in \mathbb{N}}|g_m(\tau_n)|\right)^p}, \end{align} where \begin{align*} & \theta_f: \mathcal{D}(\theta_f) \ni x \mapsto \theta_fx \coloneqq \{f_n(x)\}_{n=1}^\infty\in \ell^p(\mathbb{N}), \quad \theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx \coloneqq \{g_n(x)\}_{n=1}^\infty\in \ell^p(\mathbb{N}). \end{align*} Inequality (1) is unexpectedly different from both bounded uncertainty principle \textit{[arXiv:2308.00312v1]} and unbounded uncertainty principle \textit{[arXiv:2312.00366v1]} for Banach spaces.