The Internet of Things (IoT) has recently emerged as an innovative technology capable of empowering various areas such as healthcare, agriculture, smart cities, smart homes and supply chain with real-time and state-of-the-art sensing capabilities. Due to the underlying potential of this technology, it already saw exponential growth in a wide variety of use-cases in multiple application domains. As researchers around the globe continue to investigate its aptitudes, a collective agreement is that to get the best out of this technology and to harness its full potential, IoT needs to sit upon a flexible network architecture with strong support for security, privacy and trust. On the other hand, blockchain (BC) technology has recently come into prominence as a breakthrough technology with the potential to deliver some valuable properties such as resiliency, support for integrity, anonymity, decentralization and autonomous control. Several BC platforms are proposed that may be suitable for different use-cases, including IoT applications. In such, the possibility to integrate the IoT and BC technology is seen as a potential solution to address some crucial issues. However, to achieve this, there must be a clear understanding of the requirements of different IoT applications and the suitability of a BC platform for a particular application satisfying its underlying requirements. This paper aims to achieve this goal by describing an evaluation framework which can be utilized to select a suitable BC platform for a given IoT application.