2021
DOI: 10.1145/3486612
|View full text |Cite
|
Sign up to set email alerts
|

Towards Fine-Grained Online Adaptive Approximation Control for Dense SLAM on Embedded GPUs

Abstract: Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 54 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?