Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characteristics of the other two techniques—loop skipping and thread approximation. Then, we propose SLaPP, an online adaptive approximation controller, which aims to control the error to be under an acceptable threshold. The evaluation shows SLaPP can achieve 2.0× performance speedup and 30% energy saving on average compared to the case without approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.